An attempt of Synthesis Astronomy, Music, Mathematic, Programming,
Linguistic, Numerology and Astrology
а аHithertoа ( 2004 y.) there hasnТt any obvious
provability of the falsity or trustiness
of theа
astrology.а This work proves that
this system of consummation is the genuine science, based on the preciseа mathematical
calculation.
To verifyа thisа pointа
ofа viewаа the method of the defining or detailing the
time of somebodyТs birthа or, as itТs
called in the astrology,а the method of
rectification will be used.
The time of birth is an objective indication, noted in the maternity
hospital or in the
historicalа
chronicsа of aа person.
ItТs useless to prove the truthfulness of the future events,а thatСsа whyа we
shall try to definite a precise hour and minute of a personТs birth Ц an event,
which has happened and scrupulously fixed. LetТs mention, that no any other
science,
existing now, can define the correct
time of the birth by the previous events of
the personТs life.
The dates of the events of the personТs life (marriages, diverse,
illnesses,
removals) putа into the computerТs program УUrsa MajorФ (Demo-version) which Is
possible toа download inа
the Internet free:
After
this procedure the time of the personТs birth (
аappears on theа
display ofа theаа computer.
аааааа Time birthа onа
defaultа put on 12 h.
аааааа ItТs
possible to identifyа theа timeа
ofа birthа ofа
16а prominentа personsа
inа demo-version:
Albert Einstein
Adolfаа Hitler
Napoleonаа Bonopart
Vincentа Vanа Gog
Iohannа Sebastyanа Bach
Johnа Lennon
Daneа Radyar
Karl Marx
Georgeа Bush
Vladimirа Ilychа Lenin
Alexanderа Sergeewich Pushkinа
Nikolaiа Konstantinowichа Roerich
Helenaа Ivanownaа Roerich
Alla Borisovnaа Pugachova
Boris Nikolayewich Eltsin
Vladimir Vladimirowichа Putin
аа ( time in GMT)
Johnа
LennonТsа birth time the
computer program calculateааааааааааа 6 h
From the data sourceааааааааааа ааааааааааааааааааааааааааааааааааааааааааааааааааааааа 6 h
аа Adolf
HitlerТsа birth
time the computer program calculateаааа ааа 18
h
From the data sourceаааааааааааааа ааааааааааааааааааааааааааааааааааааа ааааааааааааааааааааа 18 h
Albert EinshteinТsа birth time the
computer program calculateааааа аааааааааа 11h
From the data sourceаааааааааааааааааааааааааааааааааааааааааааааааааааа ааааааааааааааааааааа 11 h
Karl MarxТsа
birth time the computer program calculateааааааааааааааааааа а 3h
From the data source аааааааааааааааааааааааааааааааааааааааааа аааааааааааааааааааааааааааааааааааа2 h
Atа theа
secondа partа ofа theа bookа
itа willа beа
describedа theа methodа
ofа designation theа timeа
ofа theа birthа
manually,а withoutа theа
computer.
аааааааааааааааааааааааааааааааааааа аааааа
Chapter 1
ItТs
necessary to detail the theory of probabilityТs meanings: probability (A) and
event. To do it letТs use the best teaching and
explaining method - a Game. An Indian myth tells us that our entire Universe is
Lila,
The probability theory is close to games. The history of it
origin is connected with
аthe
calculating of the combinations, happening in dices or cards. So, letТsа play.
There are 24 hours in day. LetТs divide itа into 12 dimensions.
Every periodа is
putа on a card.
Another side of the cards is just the same as playing cards.
1.аа
0h-2h
2.аа
2h-4h
3.аа
4h-6h
4.аа
6h-8h
5.аа
8h-10h
6.а
10h-12h
7.а
12h-14h
8.а
14h-16h
9.а
16h-18h
10.а
18h-20h
11.а
20h-22h
12.
22h-24h
Lets make one card a winning Ц one, e.g. the 6. Now we can offerа the
12 cardТs packа
toа thoseа who desire to examine his fortune. Those who
have chosen this card
аwillа win the game.а Whatаа
is theа
probability of this result?
There are 12 cards, a card-УwinnerФ, so the necessary probability of
such result P (A),
willа be equal the amount
of all the same operationsа Ц taken out
the cards Ц
dividingа on the amountа of the probable variants:
P(A) = 1/12ааааааааааааааааааааааааааааааааааааааааааааааааа (1)
а orа 0.083333.........
а
аааааа Allow aа participant of the experimentа take out the card,
write the result,
and put this card back the pack. LetТs believe our
participant hasа taken
the Уcard-
winnerФ once more at the second game.
ааааааа Which probability P (2) is
that another attempt willа
bringа himа the Уcard-winnerФ too?
Р(2)=1/12*1/12=1/144=0.0069444Е
а Theа probabilityа lessened very much,а i.e. he canа
metamorphoseа intoа luckyа
twice only by 144а attemptions!
а 3
time:
ааааааа P(3) = 1/12*1/12*1/12 =
0.000578
аааааааа
ЕЕЕЕЕЕЕЕ..
аааааааа
ЕЕЕЕЕЕЕЕ..
аа 27
time:ааааааааааааааааааааааааааааааа Р(27) =
1/12*1/12*1/12/1/12ЕЕЕ.=а 6.9837 E - 035
аа 28
time:ааааааааааааааааааааааааааааааа Р(28) =
1/12*1/12*1/12/1/12/1/12ааа = 5.77165 E -
029
аааааааа 30
time:аааааааааааааааааааааааааааааа P(30) = 3.942 E - 041
аа ааWhat we are doing all this calculating for?
The method, suggested by this work,
аsupposedа toа
find any unknown quantity through other knownа data. There is no 100% result. So which
result must we get to consider this method scientific and worthy the credit? In
other words, puttingа
inа theа computerТsа
the data of 100 persons, whomа
ofа them programа will give the right answers the correct time
of birth? May be it is -а
60%,70%, 80%, 90%? There is an opinion amongа theа
scientistsа thatа the methodа
isа improved if % approximate to
80.
ааааааааа So,а weа
knowаа ifа theа
computerа designateа the time of the birth close to +- 1 hour, so
the probability of this event will be 1/12, as it followed from the formula (1)
аWhichа chanceа
hasа the computerа just to guess the time of birth? ItТs
possible to put inаа theа programа the generatorа
of casual numbers, which willа
give the points fromа 0 hаа till 24 hours.
So,а weа haveа
calculatedа theа results closed to +- 1 hour (1)
ааааааааааа P (A)=
1/12 or 0.083333Е.
Precisely +-1/2
h (30 minutes) or 0.5 h
аааааааа 0.5h * 2 = 1h
Indefiniteness = 24 h
Now, the number of cards will be increasing:аа 24/1= 24
1.
0h Ц1h
2. 1h-2h
3.
2h-3h
4.
3h-4h
5.
4h-5h
6. 5h-6h
7. 6h-7h
8. 7h-8h
9. 8h-9h
10. а9h-10h
11. 10h-11h
12. а
11h-12h
13. а
12h-13h
14. аа
13h-14h
15. аа
14h-15h
16. а
15h-16h
17. а
16h-17h
18. а
17h-18h
19. а
18h-19h
20. а
19h-20h
21. а
20h-21h
22. а
21h-22h
23. а
22h-23h
24. а
23h-24h
There will be 24 cards
ааааааа P(A)
= 1/24 or 0.004166
Probabilityа P (A) = 1/24а or 0.004166Е
Precisely а+-1/4а ofа
hour ,а 0.25 of hourаа ( 15 minutesа
):
а0.25 * 2 = 0.5
1. 0 h
2. 0 h
3.а 1 h
4.а 1 h
5.а 2 h:00 m Ц 2 h
6.а 2 h
7.а 3 h
48. 23 h
So, following this
way we can define the time of birth approaching to +-15а minutes .
Theа numberа of cards =а
24/0.5 = 48
So, the precision
of the results will be 30 minutes.
Probabilityаа P
(A) = 1/48а orа 0.020833....
Precisely +- 1/8 of hour ,а 0.125 of
hourаа ( 7.5 minutes )
ааааааа 0.125*2
= 0.25
аааааа
Indefiniteness = 24 h
ааааа The number
of cardsа =а 24/0.25 = 96
аааааааааааааааааааааааааааааа P(A) = 1/96а or
0.010416... .аааааа (2)
Precisely +-1/10 of hour , 0.1 of hourаа ( 6 minutesа
):
ааааа 0.1*2 = 0.2
ааааааааа Indefinitenessа = 24 hours
аааааааа The number of cards =а 24/0.2 = 120
аааааааааааа ааааааааааааааааааP(A)
= 1/120а or 0.00833....аааааааа (3)
Precisely аа+-1/15 hour, 0.066 hour (
4minutes) :
аааааааааааааааааааааа 0.066*2 = 0.133а
ааааааааааааа Indefinitenessаа = 24 hoursаа
аааааааааа The
number of cards:аа 24/0.133Е = 180
аааааааа аProbabilityа P(A) = 1/180 or 0.05555Е.аааааааааааа (4)
ааааа Precisely а+-1/20 of
hour, 0.05 of hourаа ( 3 minutesа )
0.05*2=0.1
аааааааа The number of cardsа = 24/0.1 = 240
аааааааа Probabilityааа Р(А)а = 1/240
I.е. the probability of
guessing the timeа +-3
minutes occasionally is equal to
аааааааааааааааааааааааааа Р(А) = 0.002416ЕЕЕ.аааааааааааааааа (5)
LetТsа tryа
toа defineа somebodyТsа
time of birth with the help of a computer.
LetТs take the known timeа ofа
birth of John Lennon. He was born 9 of
October 1940 at 6.30. Thereа wasа
theа Worldа Warа
II. There was summer
time inа
So,аа letТsа define the time by Greenwich ( GMT ).
ааааа GMT =а 6h 30mа
Ц 1 hour = 5 h
Theа computerа foundа
time of birth with the precision +-18 minutes:ааа 5h
аааааа Precisely а+- 18 minutes = 0.3 h
аааааа 0.3*2 =
0.6
аааааа 22 h - 2 h = 20 hour
аааааа The number of cards:а 20 / 0.3а =а
66.67
аааааа Probabilityа P(A) = 1/
66.67 = 2.27 e Ц4
NAME |
DATA SOURCEаа |
аааа Events |
Indefini- teness |
Probability |
JOHNLENNONа |
SADC: #4557 "A TWIST OF LENNON" |
а Marriage:
а 20 march 1969
Birth of children
Julian
Lennon
а 8 april 1963аDevorce8 november 1968
|
From 2 h to 22 h |
1/66.67= 2.27 e -4
|
A.Hitler |
18:30 WEDT
|
Injury of leg 7 october 1916 аTemporally аblyndness
by gaz attack 13 october 1918
|
а 24 hour а |
24/0.1=240 P(A) =1/240 |
A.Einstain
|
DATA
SOURCEаа SADC : #3728 GAUQ 2/3259 аа 11:30 LMT |
аа Illness: а Jaundice а 1917 ааа Dearth: а18.04.1919
|
ааааа 24 h |
11h46mЦ 11h 30m =16m= = 0.267h аа 24/0.267 = 89.88 P(A)=1/89.88 |
KARLаMARX
|
а Certyficat ofа birth:аа birth time 2 h of local time = 1 h
|
а Marriage: 19 June 1943 ааа
Dauter's: 1 May 1844 26 September 1845 а16 January 1855 |
ааа 24 h а |
1/14.845 а 3 h 10 m- Ц 1h = 1h 37m = 1.616 h ааааа 24 h / 1.616 h = 14.845 p(a)=1/14.845 |
|
|
|
аа |
|
REаааааааааааа Rectificftions
|
Name |
Israitel |
Globa |
аа Vronskij |
Compаааа programm
|
A.Lavoi |
D.Radyar |
A.Hitler |
|
|
|
18:36 LMT |
18:34:35 ааааLMT
|
18:38 аааLMT |
K.Marx |
1:05 LMT |
1:36 LMT 2:31 |
|
3:10 GMT |
|
|
B.N.Eltsin |
1:05 LMT |
13:15 GMT |
13:34:57 GMT |
13:35 GMT |
|
|
|
|
|
||||||||
|
|
|
|
|||||||
|
|
|
|
|
||||||
|
|
|
|
|
|
|
||||